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Abstract

The work in this paper concerns the one-dimensional melting of a finite thickness layer. An asymptotic series solution describes the
temperature in the melt regions. In the solid region the thermal boundary layers are approximated by a cubic polynomial. Results are
compared with the exact solution for a semi-infinite block, and shown to agree to within less than 1%. The method is then applied to a
situation where no analytical solution is available. A finite thickness frozen solid is placed on a warm substrate in a warm environment:
initially the base of the solid heats to the melting temperature when a single melted region develops and subsequently a second melting
front appears on the top boundary. We also present an example relevant to heating an ice layer from below, which occurs with de-icing
systems.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The melting of a finite block has many interesting natu-
ral and industrial applications. Perhaps the most obvious
example is the melting of ice in a warm environment, exam-
ples in the study of in-flight aircraft and power cable de-
icing may be found in [7,12,16,19,21,25]. Melting of ice
blocks or ice particles during their transportation for
underground refrigeration in mines is described in [24].

If we consider the most simple case of one-dimensional
melting then it is possible that there are one, two or three
distinct regions during the process, namely a melted layer
at the bottom, a solid layer above and another melted layer
on the top. The mathematical description then requires
solving heat equations in the three regions and coupling
these with two Stefan conditions to determine the position
0017-9310/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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of the interfaces. Clearly, there is no general analytical
solution and the presence of two moving boundaries, cou-
pled with three partial differential equations, makes the
numerical solution problematic. Consequently, the goal
of this paper is to determine a relatively simple approxi-
mate solution to the problem.

In the following work we focus primarily on ice melting,
since data for this problem is easy to acquire. However, the
models are applicable to other melting or solidifying sys-
tems such as in the metal processing industry. We use
two methods to simplify the description of the melting pro-
cess. In the water region we find that an asymptotic solu-
tion, taken to first order, accurately describes the
temperature profile. In the ice region the classic boundary
layer form of the temperature, particularly for small times,
prevents us from using a standard eigenfunction expansion.
Instead we modify the heat balance integral method of
Goodman and Shea [8,9]. Their method is an adaptation
of the Karman–Pohlhausen integral method for analysing
boundary layers, see [23]. The approach of Goodman
and Shea involved approximating the temperature in the
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water layer and ice boundary layer by a quadratic polyno-
mial, where the unknown coefficients are chosen to satisfy
the boundary conditions and heat equations (the K–P
method uses a quartic polynomial). Once melting starts
they approximate the temperature throughout the ice by
a single quadratic. They also limited their analysis to either
fixed temperature or insulated boundary conditions. We
adapt this method in a number of significant ways. Firstly,
as already mentioned, we use an asymptotic solution in the
water. The temperature is described by a power series in
odd powers of the co-ordinate. To first order we obtain a
cubic. In the case where we can obtain an analytic solution,
for example the classical problem of melting an infinite
block on a fixed temperature substrate, the small distance
or large time expansion of the solution leads to a cubic tem-
perature profile (with no quadratic term), so our series
solution has the correct form. This motivates us to also
look for a cubic approximation in the ice. Once melting
starts the temperature in the ice typically has two boundary
layers joined by a region of constant temperature. A single
quadratic provides a very poor approximation to this pro-
file, hence we retain two cubics at either side, even after the
boundary layers meet. We find that in cases where the qua-
dratic approximation of Goodman and Shea agrees well
with an analytical solution then the cubic also shows good
agreement, however, we also present a case where the qua-
dratic results in an 11% error for the prediction of the time
when melting first occurs. The cubic approximation gives a
0.3% error.

One-dimensional Stefan problems have been studied by a
number of authors. The majority of work concentrates on
single-phase problems that describes the melting of a solid
semi-infinite material, either initially at its melt tempera-
ture, or with the assumption that the temperature inside
the solid layer prior to melting is constant [11,14,15,27].
The classic self-similarity solution of Neumann is described
in Section 3, see [4,10]. The finite thickness block has been
investigated in [5,13]. They consider a slab that is insulated
on one side while the other side is subjected to a heat input
varying arbitrarily with time, with the melted part being
removed immediately upon formation. The original partial
differential equation is transformed into an ordinary inte-
gro-differential equation and solved using successive
approximation methods. This method can become very
cumbersome if different boundary conditions are used. In
addition, the method restricts the initial temperature distri-
bution. More recently, the heat balance integral method has
been used both analytically, with a new exponential formu-
lation given in [14], and numerically, as discussed in [2,3]
amongst others. Related work has focussed on general
numerical models for one-dimensional Stefan problems,
including: level set and moving grid methods in [11], a
fixed-grid enthalpy formulation in [26], finite volume meth-
ods in [22], and explicit variable time-step methods in [28].

In the following section we describe the mathematical
problem. In Section 3 we deal with the classical problem
of the melting of a semi-infinite block on a fixed tempera-
ture substrate. This has an analytical solution which we
can then compare with our approximate solution methods.
Satisfied that the approximate method is accurate, we move
on to the melting of a finite block in a warm environment
in Section 4. In this problem the final stage involves solving
heat equations in three regions coupled with two Stefan
conditions. Finally, we briefly outline the method for mod-
elling a de-icing system, where an energy source at the sub-
strate causes melting.

2. Problem description

In this section we describe the governing equations for a
finite thickness block of frozen material placed on a warm
substrate. We deal only with one-dimensional melting.
Energy is supplied by the substrate and also at the free sur-
face and this causes the block to melt. Initially, the block is
at a constant temperature h0, which is below the melting
temperature h0 < Tm. Depending on the heat transfer
between the block and the surface, melting may occur
immediately or there may be an initial transient when the
bottom of the block, z = 0, heats up to the melting temper-
ature. In either case there will be a growing boundary layer,
where heat has diffused into the block, raising its tempera-
ture above h0. At the top of the block there will also be an
exchange of energy between the ambient gas and the block.
This will result in a second boundary layer with heat diffus-
ing into (or possibly out of) the block, and may lead to a
second melting front. It is possible that the ambient gas
removes heat from the block and melting never occurs at
the top surface but since the more difficult problem arises
with a second melting front, we will focus on that situation.
Our main interest is in the thermal problem and so we will
neglect the effect of density changes. Of course there is no
difficulty in introducing this to the model: for example if
the ice and water densities are qi and qw and we have a sin-
gle water layer of thickness h, where the ice block originally
has thickness H and the current thickness is Hc, then

qiðH � H cÞ ¼ qwh; ð1Þ

provides the appropriate relation between the heights.
In Fig. 1 we depict the four phases that occur when a

block is placed on a warm surface in a warm environment
which eventually results in two melting fronts. We actually
split the problem into four stages. In the first phase, called
Phase 1, the block is still below the melting temperature
everywhere and there are boundary layers near z = 0 and
z = H. The position of the edge of each boundary layer is
denoted d1, d2 respectively. In Phase 2 melting has com-
menced at the bottom of the block and so we must deal
with a fluid layer there. The temperature at the top is still
below the melting temperature. In Phase 2 there is always
a region where h = h0 within the block. Phase 3 begins
when the two boundary layers meet, d1 = d2, and subse-
quently the temperature is always above h0. Finally Phase
4 commences when the temperature at z = H reaches the
melting temperature and a new melting front appears.



Fig. 1. Schematic of the four phases of melting when a block is placed on a surface above the melting temperature.
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Phase 4 can continue until the whole block has melted. The
time at which Phase i ends is denoted ti.

It should be noted that the sequence depicted in Fig. 1 is
just one possibility. Clearly other sequences are possible.
For example if heat is removed at the top surface, such
as in aircraft icing, then melting will never occur there.
The temperature for d2 < z < H will be below h0. Melting
may occur at z = H before d1 = d2. Also, perfect thermal
contact between the block and substrate leads to
h(0, t) = Ts and melting will occur immediately. However,
these variations can all be dealt with by the methods
described in the following sections. In particular we will
look at the perfect thermal contact problem in Section 3,
since this permits an analytical solution and some verifica-
tion of our analysis.

2.1. Governing equations

The most complex version of the problem, occurring in
Phase 4, is governed by five equations. These are three heat
equations, which describe the temperature in the bottom
and top water layers and the ice, and two Stefan conditions,
which describe the position of the two melting boundaries.
Models for the other phases are special cases of this situation.

The problem is described by the three heat equations

oT
ot
¼ jw

o
2T

oz2
;

oh
ot
¼ ji

o
2h

oz2
;

ov
ot
¼ jw

o
2v

oz2
; ð2Þ

and two Stefan conditions

qiL
dh1

dt
¼ ki

oh
oz
�kw

oT
oz

� �����
z¼h1

; qiL
dh2

dt
¼ ki

oh
oz
�kw

ov
oz

� �����
z¼h2

;

ð3Þ
where T, h, v represent the temperature in the three layers,
j is the thermal diffusivity, q the density, L the latent heat
of melting and k the conductivity, with subscripts indicat-
ing ice or water.

Appropriate boundary conditions are as follows. In the
case where the ice layer does not immediately melt at z = 0
we apply a Newton cooling condition that includes an
energy source term

oh
oz
¼ a1 þ a2ðh� T sÞ: ð4Þ

A similar condition is imposed at the top surface, z = H,

oh
oz
¼ a3 þ a4ðT a � hÞ; ð5Þ

where Ts, Ta denote the substrate and surrounding air tem-
peratures respectively. The source terms a1, a3 can represent
a number of effects, such as the energy from an internal
heating or cooling system that acts through the substrate.
In the ice accretion models described in [1,17–19] super-
cooled droplets impact on the ice surface. There a3 includes
the kinetic energy of incoming water droplets, aerodynamic
heating and latent heat of freezing. The sink terms can in-
clude convective heat transfer and sublimation for example.

When water appears at z = 0 then Eq. (4) is changed to

oT
oz
¼ a5 þ a6ðT � T sÞ; ð6Þ

and when water appears at z = H, Eq. (5) is changed to

ov
oz
¼ a7 þ a8ðT a � vÞ: ð7Þ

Any melting interfaces remain at the melting tempera-
ture Tm, and so
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T ðh1; tÞ ¼ hðh1; tÞ ¼ T m; hðh2; tÞ ¼ vðh2; tÞ ¼ T m: ð8Þ
Initially the ice temperature is constant. If water appears

on z = 0 at t = t1 and on z = H at t = t3 then

hðz; 0Þ ¼ h0; h1ðt1Þ ¼ h2ðt3Þ ¼ 0: ð9Þ
The system of Eqs. (2), and (3) and corresponding bound-

ary conditions cannot be solved analytically. The presence of
the two moving boundaries makes the numerical solution
difficult, even in the current one-dimensional problem.
Hence we now seek a simplified version of the problem which
is amenable to analysis. The route we will follow involves an
asymptotic solution in the fluid layers, and a modified ver-
sion of the heat balance integral method [9] in the ice. We will
begin by demonstrating the method on a classical Stefan
problem, where a semi-infinite block is placed on a surface
that is maintained at constant temperature Ts > Tm.

3. Melting of a semi-infinite block on a fixed temperature

substrate

We now turn to the standard problem where a semi-infi-
nite block is in perfect thermal contact with a substrate of
infinite thermal mass. This leads to the two layer problem,
with water occupying the region 0 < z < h1(t) for t P 0 and
ice for h1 < z.

The problem is governed by the heat Eq. (2a, b) and the
Stefan condition (3a) subject to boundary conditions

T ð0; tÞ ¼ T s; T ðh1; tÞ ¼ hðh1; tÞ ¼ T m; hjz!1 ! h0;

ð10Þ
and the two initial conditions

hðz; 0Þ ¼ h0; h1ð0Þ ¼ 0: ð11Þ
This corresponds to the system described in the previous
section with no top water layer, H ?1 and a2,a6 ?1
(which then requires t1 = 0).

The appropriate solution has temperature profiles

T ¼ T s þ Aerf
z

2
ffiffiffiffiffiffiffi
jwt
p ; h ¼ h0 � Berfc

z
2
ffiffiffiffiffiffi
jit
p ; ð12Þ

and interface height (see [6])

h1ðtÞ ¼ 2k
ffiffiffiffiffiffiffi
jwt
p

; ð13Þ
where

A ¼ T m � T s

erfk
; B ¼ h0 � T m

erfcðk
ffiffiffiffiffiffiffiffiffiffiffiffi
jw=ji

p
Þ
;

and k is found using the Stefan condition (3a)

qiL
ffiffiffi
p
p

k ¼ kiffiffiffiffiffiffiffiffiffi
jwji
p Be�k2jw=ji � kw

jw

Ae�k2

: ð14Þ
Table 1
Parameter values for ice and water

ki 2.18 W/m �C kw 0.57
jw 1.35 � 10�7 m2/s qi 917
Tm 0 �C L 3.34 � 1
3.1. Approximate solution in the water layer

Let us first focus on the water layer and write the prob-
lem in non-dimensional form. We set

t̂ ¼ t
s
; ẑ ¼ z

H
; ðT̂ ; ĥÞ ¼ ðT ; hÞ � T m

DT
; ð15Þ

where s; H are time and height scales, and the tempera-
ture scale is DT = Ts � Tm.

The heat equation in the water becomes

obT
ôt
¼ sjw

H2

o2bT
oẑ2

; ð16Þ

and the Stefan condition is now

qiLH
2

skwDT
dĥ1

d̂t
¼ ki

kw

oĥ
oẑ
� oT̂

oẑ
: ð17Þ

This determines the time-scale for our melting process,
s ¼ qiLH

2=ðkwDT Þ. Substituting this time-scale into the
heat equation in the water leads to

o2bT
oẑ2
¼ kwDT

qiLjw

obT
ôt
¼ � o

bT
ôt
; ð18Þ

where � = kwDT/(qiLjw) is independent of the choice of
height-scale. Using the parameter values from Table 1
and DT = 20 �C gives � = 0.27.

We now look for a series solution for bT in the formbT ¼ bT 0 þ �bT 1 þ � � � : ð19Þ

The leading and first order equations are

Oð�0Þ :
o2bT 0

oẑ2
¼ 0; Oð�Þ :

o2bT 1

oẑ2
¼ obT 0

ôt
; ð20Þ

with appropriate boundary conditionsbT 0 ¼ 1; bT 1 ¼ 0; at ẑ ¼ 0; bT 0 ¼ bT 1 ¼ 0; at ẑ ¼ ĥ1:

To Oð�Þ the temperature is then given by

bT ¼ 1� ẑ1

ĥ1

� � ẑ
6

1� ẑ2

ĥ2
1

 !" #
dĥ1

d̂t
: ð21Þ

In dimensional form this is

T ¼ T s � ðT s � T mÞ
z

h1

� T s � T m

6jw

z 1� z2

h2
1

 !
dh1

dt
: ð22Þ

The derivative, evaluated at z = h1,

oT
oz

����
z¼h1

¼ �ðT s � T mÞ
h1

þ T s � T m

3jw

dh1

dt
; ð23Þ
W/m �C ji 1.16 � 10�6 m2/s
kg/m3 qw 1000 kg/m3

05 J/kg



Table 2
Parameter values used in Section 3 and 4

H 0.05 m Ta 31 �C h0 �20 �C
Tm 0 �C Ts 31 �C a2 350 m�1

a4 10 m�1 a6 1500 m�1 a8 200 m�1
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will be substituted into the Stefan condition, (3a), once the
temperature in the ice is determined.

3.2. Approximate solutions in the ice layer

In the ice we employ a modified version of the heat bal-
ance integral method of [9]. Goodman and Shea solve melt-
ing problems for a finite slab at an initially constant
temperature, with two types of boundary condition,
namely a fixed temperature substrate T(0, t) = Ts > Tm,
and a fixed heat flux hz(0, t) = a2. Using the latter boundary
condition the first phase of their problem involves deter-
mining the temperature in the ice until it reaches the melt-
ing temperature. In the ice we expect a thermal boundary
layer, of thickness d1(t). The temperature in this boundary
layer is approximated by a quadratic polynomial which
matches the constant temperature region at z = d1. We
write the quadratic in terms of d1(t) � z, since this simplifies
the subsequent algebra

hðz; tÞ ¼ aðtÞ þ bðtÞðd1ðtÞ � zÞ þ cðtÞðd1ðtÞ � zÞ2: ð24Þ
There are four unknowns a, b, c, d1 which are determined as
follows. Firstly at z = 0 we can apply hz = a2. Further condi-
tions are imposed at the unknown position d1(t), where the
temperature smoothly approaches the initial temperature h0

hðd1; tÞ ¼ h0;
oh
oz

����
z¼d1

¼ 0:

These two conditions lead to a = h0, b = 0 and the condi-
tion at z = 0 gives c = � a2/2d1. The temperature can
now be expressed in terms of the single unknown d1. This
is determined by integrating the heat equation between
z = 0 to z = d1, which results in a single first order ODE
for d1. For z P d1 the temperature is constant, h = h0. In
the case of a finite block a similar analysis may be carried
out near the upper surface as long as the two boundary lay-
ers do not meet. However, Goodman and Shea neglect the
right hand boundary until water appears. The regions may
be seen in the diagram for Phase 1 in Fig. 1.

When water appears Goodman and Shea imposed a
quadratic temperature profile in the water layer, defined
by z 2 [0, h1], and another quadratic all the way across
the ice block, z 2 [h1,H]. We will use a similar approach
but with the following differences. Firstly, the asymptotic
solution in the water indicates that the profile is more nat-
urally described by a cubic (with no quadratic term). This is
in keeping with the small argument expansion of the error
function solutions, (12), in both the ice and water which
involve only odd powers of z. Consequently we use cubic
approximations rather than a quadratic (again in terms
of the shifted co-ordinate d(t) � z). For example in the
lower ice boundary layer we set

hðz; tÞ ¼ aðtÞ þ bðtÞðd1ðtÞ � zÞ þ cðtÞðd1ðtÞ � zÞ3: ð25Þ
The temperature in the water is already in the form of a cu-
bic, given by Eq. (22). Secondly, rather than stretch the single
cubic across the whole ice region (which leads to a very poor
approximation when water first appears), in Phase 2 we use
two cubic profiles to define the two boundary layers in the
ice. The two cubics meet when d1 = d2, as shown in Fig. 1.

However, for the current problem we are only interested
in the behaviour near z = h1 to compare with the error
function solution. In this case the method proceeds as fol-
lows. Choosing (25) to represent the temperature profiles
for z 2 [h1,d1] and imposing the boundary conditions at
z = d1 we find, as with the quadratic case, that a = h0,
b = 0. The interface condition h(h1, t) = Tm gives

cðtÞ ¼ T m � h0

ðd1 � h1Þ3
:

We define the integral of the temperature as

~hðtÞ ¼
Z d1

h1

hdz ¼ ðd1 � h1Þ
3h0 þ T m

4
:

Integrating the heat equation in the ice from z = h1 to
z = d1 gives

ji

oh
oz

����
z¼d1

� oh
oz

����
z¼h1

" #
¼
Z d1

h1

oh
ot

dz

¼ d~h
dt
� h0

dd1

dt
þ T m

dh1

dt
; ð26Þ

where we have taken the time derivative outside the inte-
gral. Substituting for hz and ~h leads to the following equa-
tion for d1, h1:

12ji

d1 � h1

¼ dd1

dt
þ 3

dh1

dt
: ð27Þ

A second equation comes from substituting for hz and Tz

(given by Eq. (23)) into the Stefan condition (3a)

qiL�
kwðT m � T sÞ

3jw

� �
dh1

dt
¼ �3ki

T m � h0

d1 � h1

� kw

T m � T s

h1

:

ð28Þ

The original problem, defined in terms of two PDEs for the
temperature and an ODE for the interface position, has
now been reduced to two first order, coupled ODEs for
d1 and h1.

3.3. Comparison of results

The physical parameter values used in this and following
sections are given in Table 1. We also impose the ai values
from Table 2 in the boundary conditions. The two values
a1, a4 were chosen based on some simple experiments. Ice
sheets formed in a freezer at �20 �C were placed on a large
piece of metal (W400 steel) in a walk-in incubator, at 31 �C.
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The time taken for the bottom and top surfaces to start
melting was measured. Melting at the bottom occurred
almost immediately, hence we choose a1 to give initial melt-
ing around 1 s. The parameter a4 was chosen to match the
time when the top of the block started to melt, and a6, a8

are typical values taken from published literature. a1, a4,
a6, a8 correspond to heat transfer coefficients between the
ice and substrate, ice and air, water and substrate and
water and air of 763, 21.8, 855, 114 W m�2 respectively.
Any ai not quoted in Table 2 is set to zero.

In Fig. 2 we compare temperature profiles, at times
t = 1, 5, 10, 20 s, obtained via the approximate and exact
methods. The dashed line on the figures is the exact solu-
tion for the temperatures in the two regions, and the solid
line is the approximate solution. Within the water layer
there is no visible difference, whereas within the ice layer
there is a slight difference which is most noticeable near
z = d1 (marked with a ‘*’). However, the important point
is that the gradients near z = h1 are similar since it is the
temperature gradient that determines h1. In this example,
the error in h1 remains constant, around 1.3%.

We do not show the result of the quadratic approxima-
tion in Fig. 2 since that curve is very close to the two
already shown and therefore makes it difficult to distin-
guish them. In this example the quadratic approximation
gives a slightly better agreement for h1. However, in Phase
1 described in the following section, we can also obtain an
analytical solution where we find that the time at which
water first appears is predicted to within 0.3% by the cubic
approximation, but only within 11% by the quadratic.
Consequently we prefer the cubic approximation because
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Fig. 2. Comparison of the exact error function solution (dashed line) with the
position of d1.
it provided accurate results in all our tests, is consistent
with the asymptotic approximation in the water and the
small argument expansion of the error functions, and
finally the quadratic solution has a discontinuity in the gra-
dient where the temperature reaches h0. The quadratic
gives hzz(d1, t) = 2 c(t), the cubic joins smoothly to the flat
region, hzz(d1, t) = 0.

In [14] a similar one-dimensional problem is investi-
gated. They use an exponential approximating function,
motivated by the fact that erfðzÞ � ze�z2

. Using this
approximation for the problem of this section gives a pre-
diction of h1 which is very similar to the cubic approxima-
tion. However, when applied to Phase 1 of the next section,
the results are significantly worse: the time at which water
first appears is predicted to within only 23%, rather than
0.3% for the cubic.
4. Melting in a warm environment

We now move on to a general problem for which there is
no analytical solution. Furthermore, since the final state
involves two moving boundaries and heat equations in
three regions, the numerical solution is also complicated.
As discussed in Section 1, the melting of a finite block
may occur in four distinct phases, we will work through
each one separately.

Phase 1. In this initial phase a block with constant
temperature h0 < Tm is placed on a warm surface. The
block heats up at the bottom due to the heat transfer
between the surface and the block. At the top of the block
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approximate cubic solution (solid line) at t = 1, 5, 10, 20 s, ‘*’ denotes the
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Fig. 3. Temperature profile at the end of Phase 1 when t = t1 � 1.87 s. The
dashed line denotes the exact solution and the solid line denotes the cubic
approximation, ‘*’s denote the positions d1 and d2.
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there will also be an increase in temperature due to contact
with the ambient gas, which we assume to be at a
temperature Ta > Tm. The end of this phase arises when
melting begins at z = 0, we denote the time this occurs as
t = t1.

For 0 < t < t1 we solve the heat equation (2b) in the ice
boundary layers, z 2 [0,d1], z 2 [d2,H]. In between we set
h = h0 for d1(t) < z < d2(t). Note that since this phase
occurs for a short time we never allow t to be large enough
so that d1 = d2. We use boundary conditions (4) and (5) at
z = 0 and z = H respectively. At the edges of the boundary
layers z = d1, d2 we impose the continuity conditions

h ¼ h0;
oh
oz
¼ 0; at z ¼ d1ðtÞ; d2ðtÞ: ð29Þ

Finally, we close the system with the single initial condition
h(z, 0) = h0.

If we denote the temperature in the two boundary layers
as h = h1 for z 2 [0,d1] and h = h2 for z 2 [d2,H] then the
cubic approximations become

h1ðz; tÞ¼ h0�
a1þa2ðh0�T sÞ

d1ðtÞ2ð3þa2d1ðtÞÞ
ðd1ðtÞ� zÞ3; ð30Þ

h2ðz; tÞ¼ h0�
a3þa4ðT a�h0Þ

ðH �d2ðtÞÞ2ð3þa4ðH �d2ðtÞÞÞ
�ðd2ðtÞ� zÞ3:

ð31Þ

Integrating the heat equation for z 2 [0,d1] leads to an
equation for d1, namely

d

dt
d1ðtÞ2

3þ a2d1ðtÞ

" #
¼ 12ji

3þ a2d1ðtÞ
; d1ð0Þ ¼ 0: ð32Þ

This has the implicit solution

1

2
a2

2d1ðtÞ2 þ 3a2d1ðtÞ � 9 ln½3þ a2d1ðtÞ�

¼ 12jia
2
2t � 9 ln 3: ð33Þ

For d2(t) < z < H, a similar calculation gives

d

dt
ðH � d2ðtÞÞ2

3þ a4ðH � d2ðtÞÞ

" #
¼ 12ji

3þ a4ðH � d2ðtÞÞ
; d2ð0Þ ¼ H :

ð34Þ
This has an implicit solution of the same form as (33) but
with a2 replaced by a4 and d1 replaced by H � d2.

Phase 1 ends when the bottom of the ice reaches the
melting temperature h1(0, t1) = Tm, substituting this into
(30) gives the boundary layer thickness when this occurs

d1ðt1Þ ¼
3ðh0 � T mÞ

a1 þ a2ðT m � T sÞ
: ð35Þ

The corresponding time t1 may be calculated from (33).
For this stage of the problem we can obtain analytical

solutions by noting that the boundary layer is small com-
pared to the block thickness and so we can replace the
boundary conditions at d1, d2 by
oh1

oz

����
z!1
¼ 0;

oh2

oz

����
z!�1

¼ 0:

This leads to

h1ðz; tÞ ¼ h0 �
a1 þ a2ðh0 � T sÞ

a2

erfc
z

2
ffiffiffiffiffiffi
jit
p

� �
� ea2zþjita

2
2

�
� erfc

z
2
ffiffiffiffiffiffi
jit
p þ a2

ffiffiffiffiffiffi
jit
p� ��

; ð36Þ

h2ðz; tÞ ¼ h0 þ
a3 þ a4ðT a � h0Þ

a4

erfc
H � z
2
ffiffiffiffiffiffi
jit
p

� �
� ea4ðH�zÞþjita

2
4

�
� erfc

H � z
2
ffiffiffiffiffiffi
jit
p þ a4

ffiffiffiffiffiffi
jit
p� ��

: ð37Þ

The exact and approximate solutions are shown in Fig. 3 at
time t � 1.87 s, with the parameter values given in Tables 1
and 2. At this time the temperature at z = 0 has just
reached 0 �C and so this marks the end of Phase 1. The
positions d1, d2 are marked with ‘*’s. In the region z 6 d1

a slight difference in the two solutions can be observed, par-
ticularly near z = d1. The curves near z = H are virtually
identical. In this example melting starts when t1 =
1.8704 s according to the exact solution and at t1 �
1.8765 s according to the cubic approximation (which rep-
resents a 0.3% difference). The quadratic approximation
gives t1 � 1.6682 s, representing an 11% difference, and
the exponential approximation (similar to that considered
in [14]) gives t1 � 1.4491 s representing a 23% difference.
Therefore, as discussed in the previous section, the cubic
profile gives better agreement to the exact solution and
we do not consider the quadratic or exponential profiles
further.

Phase 2. This phase begins when the bottom surface starts
to melt and ends when the two boundary layers meet,
d1 = d2. The initial values of d1 and d2 are simply those
determined at the end of the previous phase. With the
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appearance of a water layer, we introduce the temperature
T and the interface position h1, where h1(t1) = 0.

The calculation at the top of the block remains
unchanged. At z = 0 we now impose (6) and at z = h1

Eq. (8a) holds.
Using the method described in Section 3.1 we find the

temperature in the water to be

T ðz; tÞ ¼ T m þ
b1

1þ a6h1

ðz� h1Þ

� b1

6jwð1þ a6h1Þ2
3 z2 � h2

1ð1þ a6zÞ
1þ a6h1

� ��
þ a6 z3 � h3

1ð1þ a6zÞ
1þ a6h1

� ��
dh1

dt
; ð38Þ

where, for convenience, we write b1 = a5 + a6(Tm � Ts).
The temperature gradient at the interface is

oT
oz

����
z¼h1

¼ b1

1þ a6h1

� b1h1

3jwð1þ a6h1Þ3
½3þ 3a6h1 þ a2

6h2
1�

dh1

dt
:

ð39Þ
In the ice boundary layer, z 2 [h1,d1], the temperature pro-
file is

h1ðz; tÞ ¼ h0 þ
T m � h0

ðd1 � h1Þ3
ðd1 � zÞ3: ð40Þ

Integrating the heat equation in the ice between [h1,d1] and
applying (40) gives a first order ODE involving h1, d1. The
Stefan condition provides a second relation and so in the
lower region the process is described by

½qiL� kwf ðh1Þ�
dh1

dt
¼ 3kiðh0 � T mÞ

d1 � h1

� kwb1

1þ a6h1

; ð41Þ

3
dh1

dt
þ dd1

dt
¼ 12ji

d1 � h1

; ð42Þ

where

f ðh1Þ ¼
b1h1

3jwð1þ a6h1Þ3
½3þ 3a6h1 þ a2

6h2
1�: ð43Þ

Note that Eqs. (41) and (42) are independent of d2. How-
ever, we still need to calculate the temperature in the upper
region to determine the end of phase 2. This could occur
because either d1 = d2 or the top starts to melt,
h2(H, t) = Tm. We choose the first condition now and deal
with the second in Phase 4. In the ice accretion model used
in [17–20] it is assumed that the layers are sufficiently thin
that a linear approximation holds. The contribution of the
water layer in that model is represented by the final term in
(41). The difference obtained by taking the cubic approxi-
mation, i.e. including the next term in the series expansion,
introduces the correction factor þkwf ðh1Þ dh1

dt . Since the cor-
rection term simply moves to the left hand side of (41), the
final calculation is just as simple as in the linear approxima-
tion but there is a distinguishable gain in accuracy.

In the ice for z 2 [d2,H], Eq. (31) describes the tempera-
ture. Eq. (34) determines d2 and so we solve this simulta-
neously with (41) and (42) to find the end of Phase 2 and
hence a new calculation must begin. We denote the time
that Phase 2 ends as t2.

Phase 3. This phase begins when the boundary layers meet,
d1 = d2 at t = t2, it ends when the top layer reaches the
melting temperature, h(H, t) = Tm at t = t3, and we must
then start a calculation with a second water layer.

Since there has been no change to the model in the water
layer the temperature for z 2 [0,h1] is still defined by Eq.
(38). During Phase 2 we approximated the temperature at
either side of the block by two cubics. Obviously we would
now hope to simplify the analysis by applying a single cubic
across the whole layer; Goodman and Shea use a single
quadratic as soon as melting starts at z = 0. Unfortunately,
the solution profile still has a very shallow base and steep
edges, so a single quadratic or cubic polynomial does not
provide a good fit. We therefore use two cubic profiles
which meet at the point z = d(t) with the initial condition
d(t2) = d1(t2) = d2(t2). Our previous functions d1, d2 defined
the points where the temperature reached h0 and hz = 0.
Once the boundary layers meet then the temperature will
rise above h0 but there will still be a point where the tem-
perature gradient is zero. This provides our definition of
d, namely

h1ðdÞ ¼ h2ðdÞ;
oh1

oz

����
z¼d

¼ oh2

oz

����
z¼d

¼ 0:

The temperature for z 2 [h1,d], z 2 [d,H] is now given by

h1ðz; tÞ ¼ hmnðtÞ þ
T m � hmnðtÞ
ðdðtÞ � h1Þ3

ðdðtÞ � zÞ3

for h1 6 z 6 d; ð44Þ

h2ðz; tÞ ¼ hmnðtÞ �
a3 þ a4ðT a � hmnðtÞÞ

ðH � dðtÞÞ2ð3þ a4ðH � dðtÞÞÞ
ðdðtÞ � zÞ3

for d 6 z 6 H : ð45Þ

We no longer need to find two boundary layer thick-
nesses but, since we no longer know the minimum temper-
ature in the block, we have introduced a new unknown
hmn(t) which, in this case, is an increasing function of time.
Substituting the temperature expressions into the heat
equation and integrating over (h1,d) and (d,H) leads to
two ODEs

3jiðT m� hmnÞ
d� h1

¼ d

dt
ðd� h1Þ

ðT mþ 3hmnÞ
4

� �
þ T m

dh1

dt
� hmn

dd
dt
;

ð46Þ
3jiða3 þ a4ðT a � hmnÞÞ

3þ a4ðH � dÞ

¼ d

dt
hmnðH � dÞ þ 1

4

ða3 þ a4ðT a � hmnÞÞ
3þ a4ðH � dÞ ðH � dÞ2

� �
b

þ hmn
dd
dt
: ð47Þ
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Fig. 4. Temperature profile at the end of Phase 2 when t2 � 32.59 s and
d1 = d2 � 0.0285 m (denoted here by ‘*’). The dashed line denotes the
exact solution near the right boundary, Eq. (37).
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These equations involve three unknowns, hmn(t), d(t), h1(t),
and the system is closed by the addition of the Stefan con-
dition (41), with h0 replaced by hmn(t), the three initial con-
ditions for h1(t2), d(t2) (determined from the previous
phase) and hmn(t2) = h0.

Hence this phase is described by three nonlinear first
order ODEs. It ends at time t = t3, when h(H, t) = Tm,
which is found from the relation

T m ¼ hmnðt3Þ �
a3 þ a4ðT a � hmnðt3ÞÞ

3þ a4ðH � dðt3ÞÞ
ðdðt3Þ � HÞ: ð48Þ

Phase 4. In this final phase both surfaces of the block melt
and so we have two water layers and two moving fronts,
denoted by h1, h2. This phase will continue until the block
has completely melted, when h1 = h2.

The temperature in the lower water layer h1(z, t) is still
specified by Eq. (38). In the solid the temperature between
h1, d remains unchanged from the previous section, (44). In
the region z 2 [d,h2] the new boundary condition
h2(h2, t) = Tm results in the profile

h2 ¼ hmn þ
T m � hmn

ðd� h2Þ3
ðd� zÞ3: ð49Þ

In the new water layer, the temperature is governed by the
heat Eq. (2c) subject to the cooling condition (7) and
v(h2, t) = Tm. Following the same method as for the lower
water layer we find

vðz; tÞ ¼ T m þ
b2

1þ a8ðH � h2Þ
ðz� h2Þ

� b2

6jwð1þ a8ðH � h2ÞÞ2

"
ðH � zÞ2ð3þ a8ðH � zÞÞ

� ðH � h2Þ2ð1þ a8ðH � zÞÞ
1þ a8ðH � h2Þ

ð3þ a8ðH � h2ÞÞ
#

dh2

dt
;

ð50Þ
where b2 = a7 + a8(Ta � Tm). The temperature gradient re-
quired in the Stefan condition is

ov
oz

����
z¼h2

¼ b2

1þ a8ðH � h2Þ
þ b2ðH � h2Þ

3jwð1þ a8ðH � h2ÞÞ3

� ½3þ 3a8ðH � h2Þ þ a2
8ðH � h2Þ2�

dh2

dt
: ð51Þ

At this stage we can proceed as before, integrating the heat
equation in the ice layer between [h1,d1] and [d2,h2] to find
two differential equations. The Stefan conditions at the two
water interfaces then provide another two ODEs and we
are left with a system of four equations for the unknowns
hmn, d, h1, h2.

As the phases have progressed the complexity of the
model has increased, due to the increasing number of
regions and moving boundaries. In Phase 4 we have four
unknowns, however, we can make a significant simplifica-
tion by noting that the temperature in the ice is close to
zero everywhere and the temperature gradient in the ice
is much less than that in the water layers. If we neglect
the contribution of the ice to the evolution of h1, h2 then
the problem is governed by

½qiL� kwf ðh1Þ�
dh1

dt
¼ � kwb1

1þ a6h1

;

½qiLþ kwgðh2Þ�
dh2

dt
¼ � kwb2

1þ a8ðH � h2Þ
; ð52Þ

where

gðh2Þ¼
kwb2ðH �h2Þ

3jwð1þa8ðH �h2ÞÞ3
½3þ3a8ðH �h2Þþa2

8ðH �h2Þ2�;

ð53Þ
and f(h1) is defined in (43). We therefore only have to solve
two ODEs for two unknowns. As usual the initial condi-
tion on h1 comes from the previous phase, we also impose
h2(t3) = H.

4.1. Results

In Fig. 3 we show the temperature profile at the end of
Phase 1 with the parameter values given in Tables 1 and 2.
In Figs. 4–8 we show results for the subsequent stages.

Fig. 4 shows the temperature profile at t � 32.59 s, and
this marks the end of Phase 2. The two boundary layers
meet at z = d = 0.0285 m, which is marked by a ‘*’. The
water height at this time is h1 � 8.2 � 10�4 m. At this stage
it is still possible to obtain an analytical solution in the top
region. This is shown as the dotted line, which agrees
almost exactly with the approximate solution for z 2 [d,H].

After the boundary layers meet the energy from the
lower layer affects the temperature in the upper region
and the error function solution becomes invalid. This
may be seen in Fig. 5, which shows a temperature profile
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Fig. 6. Temperature profile at the end of Phase 3 when t3 � 561.61 s,
d � 0.03 m and h(H, t) = Tm.
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Fig. 7. Temperature profile during Phase 4, at t = 700 s. The solid line
includes the ice layer, and d is marked by a ‘*’, and the dashed line neglects
the ice layer.
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Fig. 5. Temperature profile during Phase 3, at t = 300 s, where ‘*’ denotes
the position of d � 0.037 m. The dashed line denotes the exact solution
near the right boundary, Eq. (37).
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in Phase 3, at t = 300 s, where the temperature is every-
where greater than that predicted by the analytical solu-
tion. The height of the water layer, h1 � 3.46 � 10�3 m, is
significantly greater than in Fig. 4; also the position
z = d � 0.0373 m, marked by a ‘*’, has moved to the right.

Phase 3 ends when t = t3 � 561.61 s; this is shown in
Fig. 6. At this stage d � 0.03 m has moved back towards
the centre and h1 � 5.4 � 10�3 m. As mentioned at the
end of the previous section, the temperature gradient in
the ice is small at this time, and becomes smaller as time
increases. This is the motivation for neglecting the effect
of the ice layer on the evolution of the interfaces during
Phase 4.

Fig. 7 shows a temperature profile during Phase 4, at
t = 700 s (which is well into Phase 4). We have plotted
two sets of profiles, the solid line is a product of the full cal-
culation, including the ice layer temperature. For the
dashed line we set h = 0 and solve (52) for the water layer
thicknesses. Within the ice the temperature difference is
obvious, however the temperature in the water is hardly
effected by this approximation. For the full calculation
we find h1 � 6.3 � 10�3 m, h2 � 4.87 � 10�2 m at t =
700 s. Neglecting the ice layer we find h1 � 6.4 � 10�3 m,
h2 � 4.865 � 10�2 m (i.e. errors of 2% and 0.2% respec-
tively). Since the boundary conditions on the ice layer are
now symmetric, h = Tm at z = h1,h2, the position of d must
move towards the centre of the ice layer and eventually
remain at this point. This is confirmed in Fig. 7 where
the full calculation gives d = 0.0276 m and 1

2
ðh1 þ h2Þ ¼

0:0275 m.
Finally, in Fig. 8 we show the development of the water

layers. The vertical dashed lines show the position of each
phase. Initially there is no water, h1 = h2 = 0, after 1.87 s
water appears at z = 0. After 32.6 s the ice boundary layers
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meet, signifying the end of Phase 2. Phase 3 starts when
water appears at z = H at t3 = 561.6 s. The calculation
may then be continued until h1 = h2 and the ice is com-
pletely melted.

5. Heat source in a cold environment

We now briefly consider a variation of the above
method, where an ice layer in a cold environment is heated
from below. This example is motivated by de-icing systems,
see [21,25] for example.

Initially we will assume that the ice is in a steady-state,
determined by the ambient conditions. Energy is then
applied to the lower surface; this represents switching on
a de-icing device. The initial temperature of the ice is gov-
erned by the steady-state heat equation, hzz = 0, subject to

h ¼ T sjz¼0; hz ¼ a3 þ a4ðT a � hÞjz¼H ; ð54Þ

where a3, a4 depend on the ambient conditions. In the air-
craft icing models described in [17,18,20] a3 = 1.35 �
105 C m�1, a4 = 4.45 � 105 m�1 and Ts < Ta < Tm. This
gives

h ¼ czþ T s; c ¼ a3 þ a4ðT a � T sÞ
1þ a4H

: ð55Þ

Note that with the current values of parameters a3,a4,c > 0
and so the temperature is greatest at z = H. Eq. (55) pro-
vides the initial condition. At t = 0 a heating system is
turned on such that hz = a1 at z = 0, where a1 < 0. A typi-
cal value for a1 is a1 = � 1428 C m�1. The temperature
near the lower surface starts to rise quickly but near the
upper surface the temperature remains the same. Thus we
assume that the solution profile is identical to the steady-
state solution (55) for some region d1(t) < z < H where
d1(0) = 0. Then, following the previously described method
for melting a block in a warm environment, we assume the
temperature in 0 < z < d1(t) is of the form

hðz; tÞ ¼ aðtÞ þ bðtÞðd1ðtÞ � zÞ þ cðtÞðd1ðtÞ � zÞ3: ð56Þ

At z = d1 we require h and hz to equal the steady-state solu-
tion, i.e.

hðd1; tÞ ¼ cd1 þ T s; hzðd1; tÞ ¼ c: ð57Þ

These conditions, together with hz = a1 at z = 0, determine
the coefficients a,b,c and so (56) becomes

hðz; tÞ ¼ cd1ðtÞ þ T s � cðd1ðtÞ � zÞ þ c� a1

3d1ðtÞ2
ðd1ðtÞ � zÞ3:

ð58Þ

To determine d1(t) we integrate the heat equation from
z = 0 to z = d1 and substitute h from (58). This leads to
the simple ODE

d
dd
dt
¼ 6ji; ð59Þ

which is independent of a1. Applying d1(0) = 0 gives
dðtÞ ¼

ffiffiffiffiffiffiffiffiffiffi
12jit
p

. So the boundary layer thickness only de-
pends on the thermal diffusivity and time. This solution is
valid before melting begins, i.e. while h (0, t) < Tm. The
boundary layer thickness when melting starts is found from
(58) by setting h(0, t1) = Tm. The time is then
t1 ¼
3ðT s � T mÞ2

4jiða1 � cÞ2
: ð60Þ
Since the external parameters, represented by Tm, Ts and c,
are fixed, this equation indicates the appropriate energy in-
put a1, required to cause melting within a specified time. It
is interesting to note that the ambient temperature Ta does
not appear in (60). This is because, in this example, the
boundary layer does not extend through the ice. As soon
as d1 = H we have to change the boundary conditions on
h and then Ta will play a role.

Fig. 9 shows temperature profiles before melting begins.
The parameter values used are a1 = �1428 C m�1,
a3 = 1.35 � 105 C m�1, a4 = 4.45 � 105 m�1, Ts = �10 �C,
Ta = �8 �C and H = 0.023 m; all other parameter values
are taken from Tables 1 and 2. The dashed line denotes
the initial condition (55) and the other lines denote the tem-
perature at t = 7, 14, 21, t1s. The final time, t1 = 27.695 s, is
found using (60). It can be seen that this profile has
h(0, t1) = 0. The position of d1 is marked by a ‘*’.

In general, when considering de-icing, it is not sufficient
to simply calculate up to the time at which melting first
occurs. The ice is typically still frozen at some other point
and a water layer may grow for a short time until the aero-
dynamic forces cause the ice to break off. Consequently we
may also need to know about the evolution after melting.
We therefore introduce the water temperature T and inter-
face position h1(t), for t P t1 and h1(t1) = 0. Using the
method described in Section 3.1 we approximate the solu-
tion of the heat equation in the water by re-scaling using
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(15) and considering a series expansion in terms of the
small parameter �. Here the boundary conditions are
Tz = a5(=kia1/kw) at z = 0, for some a5 < 0, and T = Tm

at z = h. The solution up to Oð�Þ is given by

T ¼ T m � a5ðh1 � zÞ þ a5

2jw

ðh2
1 � z2Þ dh1

dt
: ð61Þ

In the ice the temperature is given by

h ¼ cd1ðtÞ þ T s � cðd1ðtÞ � zÞ þ ch1 þ T s � T m

ðh1ðtÞ � d1ðtÞÞ3
ðd1ðtÞ � zÞ3

ð62Þ

for h1(t) < z < d1(t). For d1(t) < z < H the steady-state solu-
tion (55) holds provided d1 6 h1. Using (61) and (62) in the
Stefan condition we can then follow the evolution of the
film height until d1 = H, at which point it would be neces-
sary to switch to a different model. However, we stop the
calculation here since the general idea is as specified in
the previous section and also because it is not necessary
to calculate a thick water film for this application.

6. Conclusions

In this paper we have developed an approximate solu-
tion method to describe one-dimensional melting from an
initial heating phase until completion of the melting pro-
cess. In the solid phase we employed a modification of
the heat balance integral method. Our approximation
proved to be significantly more accurate in certain cases
and of a similar accuracy in the cases where the approxima-
tion of Goodman and Shea held. Furthermore, the cubic
approximation is consistent with the expansions of the ana-
lytical solutions when such solutions are available. In the
water layer an asymptotic analysis also led to a cubic
approximation.

The method involves a number of different phases
which complicate the solution. However, the same would
be true of a numerical solution, as the number of domains
and moving boundaries increases. This semi-analytical
method then has the advantage that the dependence of
the solution on the ambient conditions may be provided
explicitly.

The analysis presented here focussed on two examples.
In the first a solid block was placed on a warm substrate
in a warm environment and the melting followed through
its various phases. This example highlighted the different
stages and how they progress. Of course there are other
possible scenarios but these will all follow similar lines to
this example. In our second example we dealt with the
problem of heating an ice layer from below. This relatively
simple analysis provides an analytical formula which may
be used to determine the amount of energy required to
melt the base in a given time, or equivalently the time
taken for melting to start with a given energy source. This
has a clear application in the development of de-icing
equipment.
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